
Formalization of the CRM:
Initial Thoughts

Carlo Meghini

Istituto di Scienza e Tecnologie della Informazione
Consiglio Nazionale delle Ricerche – Pisa

CRM SIG Meeting
Iraklio, October 1st, 2014

Outline

I Descriptions, Sentences and Their Names
I Knowing that

Descriptions, Sentences and Their Names

Documentation KB:

I Domain knowledge: descriptions of the individuals in the domain,
sentences on these descriptions.
Used by the end-users, for instance to discover and access the
resources of the library

I Documentation knowledge: descriptions of domain knowledge.
Used by digital librarians in order to manage the resources of the
library:

I provenance
I degree of trust
I the access policy

of a metadata record.

Documentation knowledge

Documentation knowledge consists of factual and ontological statements
about individuals, concepts and relations of the domain of dicourse.

It can be expressed and reasoned upon using standard tools, such as
OWL.

However, a problem arises if documentation knowledge is to be used
together with domain knowledge, as it happens in digital libraries.

In order to express knowledge about resources and about the statements
used to describe such resources in the same language, one needs very
powerful languages, whose expressive power goes beyond that of
first-order logic.

Such languages, though, are hardly usable in digital libraries, because
their negative computational properties are inadequate to digital library
requirements.

RDF can do it!

RDF allows to express metadata records as statements having the
described resource as subject and metadata elements as properties.

It also allows to express a certain amount of documentation knowledge,
by allowing properties as subjects in statements.

However, as soon as the expressivity of the language goes beyond that of
RDF Schema by including constructs from Description Logics, serious
computational problems arise.

Indeed, the combination of RDF with Description Logics yields the
language OWL Full, which is undecidable in spite of the decidability of its
two constituents.

A different approach

Simultaneous usage of two different logics:

I the object logic devoted to represent domain knowledge
I documentation logic devoted to represent documentation knwoledge.

With these two logics we build a documentation system, which has three
components:

1. the domain knowledge base
2. the documentation knowledge base
3. the naming function that associates the individual constants (i.e.,

the names) in the documentation knowledge base with the metadata
records (i.e., the sentences) in the domain knowledge base.

Documentation systems are the backbones of digital libraries.

New discovery functionality
The two KBs in a DS can be queried individually, based on the kind of
knwoledge they store.

object-query: Asko(Book u ∃Title.{Waverley}).

doc-query: Askd(∃CAss.{b}) asking for the metadata records about
book b.

mixed-object queries, asking for the resourses of the object-KB that
satisfy some property expressed in the doc-KB; for instance, the editions
of the Waverley that have been described by John

Book u ∃Title.{Waverley} u Askd(∃CAss−.Asko(∃Author .{John}))

mixed-doc queries, asking for the resourses of the doc-KB that satisfy
some property expressed in the object-KB; for instance, the metadata
records of the Waverley that have been created by Sue.

∃MRD.(∃CAss.Asko(∃Title.{Waverley})) uAsko(∃Author .{Sue})

Maybe the same separation of concerns applies to the CRM.

In the CRM we have classes and properties that can be used for
expressing domain knowledge:

I E24 Physical Man-Made Thing, P46 is composed of

and classes and properties that can be used for expressing documentation
knowledge:

I E90 Symbolic Object, P140 assigned attribute to

Would we get a more readable KB if we separated documentation from
domain knowledge?

Knowing that
Knowledge is a relation between a knower, someone endowed with mind,
and a proposition, that is, the idea expressed by a simple declarative
sentence.

In this sense, knowledge is a propositional attitude.

In order to be able to talk about of what is known or not known we
augment the language so that for every sentence α there is another
sentence Kα that can be read as “α is known”.

I “α is known to be true” is expressed as “α is known” is true: Kα
I “α is not known to be true” is expressed as “α is known” is false:
¬Kα

In this way, we only have to talk about which sentences are true or false,
the same way we talk about the world.

The language obtained by adding to L sentences of the form Kα is KL.

But what is the semantics of a sentence like Kα?

At any particular time, the knower will not have determined the actual
world state in full detail, but perhaps some possibilities will have been
ruled out. As more information is acquired, more possibilities are ruled
out, until maybe only one world state remains.

Until this single-world state is reached, the knower retains several world
states as possible, meaning that the knower supposes that the actual
world is one of these, even though it is not determined which in particular.

An epistemic state of a knower can therefore be modelled as a set S of
world states, all of which are retained as possible by the knower.

What does a knower knows, in this situation?

According to Hintikka, what is known for sure is exactly what is true in
all the world states in the epistemic state.

As a consequence, Kα is true in a particular epistemic state if α is true in
all the world states that are part of the current epistemic state S.

To have a complete knowledge of the world means to be in an epistemic
state consisting of a single world state {w}.

Under this circumstance, for every sentence of L the knower is able to
state whether or not Kα is true.

The problem is that the knower may be wrong, in the sense that the
actual world state may not be in the epistemic state of the knower, even
though the knower supposes so. In this case, we say that the knowledge
is not accurate.

In order to model the accuracy of the knowledge, we add to the epistemic
state the indication of which world state is the real one.

So now an epistemic state is a pair (S,w).

This addition allows us to determine whether our knowledge is accurate.
In particular, in an epistemic state (S,w),

I if the real world state w is in the epistemic state S, then what is
known is also true in reality, and our knowledge is accurate.

I If the real real world state w is not in the epistemic state S, then
what is known may not be true in reality, and our knowledge may
not be accurate.

To have a complete and accurate knowledge of the world means to be in
the epistemic state ({w},w), consisting of the real world state.

Knowledge and truth

There are sentences that are true but not known:

I α ∧ ¬Kα is satisfiable

There are sentences that are false and known

I ¬α ∧Kα is satisfiable

Therefore it is not generally true that a true sentence is known:

I 6|= (α ⊃ Kα)
I 6|= (Kα ⊃ α)

Valid sentences are always known

I |= α then |= Kα

ASK and TELL operations
Now that we have a language for talking about knowledge, we use it to
interact with a KB. The interaction is based on three operations:

1. Ask[α, e] ∈ yes, no
In an epistemic state e we determine whether α is known by asking
it and getting a yes or a no.

2. Tell [α, e] = e′
In an epistemic state e we add α by telling it, and getting the
system in a new epistemic state e′.

3. INITIAL[] = e0
where e0 is the epistemic state before any Tell operation. The initial
state e0 includes all world states, since at the beginning nothing is
known, except for the valid sentences.

The idea is that we imagine the lifetime of a KB as proceeding through a
number of states e0, e1, e2, . . . such that for every i > 0,
ei = Tell [αi , ei−1]. In any such state, we can use Ask to determine what
is known.

Ask
The purpose of Ask is to enable a user to find out from a KB whether a
sentence α is true or not. There can be four possible outcomes:

1. the KB may believe that α is true (Kα ∧ ¬K¬α is satisfiable)
2. the KB may believe that α is false (K¬α ∧ ¬Kα is satisfiable)
3. the KB may not know if α is true or false (¬Kα ∧ ¬K¬α is

satisfiable)
4. the KB may be in an inconsistent state and believe everything

(Kα ∧K¬α is satisfiable)

In order to find out which is the case, we can define ask as follows:

Ask[α, e] =
{

yes if e |= Kα
no otherwise

In this way, to find out which of the four above possibilities is the case,
we can first ask α and then ¬α. With two interactions we have obtained
what we wanted.

Provisional Conclusions

How do we make knower out of a CRM KB?

